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ABSTRACT: 
 
Use of satellite data in crop growth monitoring could provide great value for regional food security assessments. By using the 
difference between remotely sensed crop canopy temperature and the corresponding ambient temperature at the time of the satellite 
overpass the daily actual rate of transpiration can be inferred. This relationship allows adjustment of the actual rate of assimilation 
and hence of actual crop growth. Although promising results were obtained using methods based on this premise, the sensitivity of 
these methods to temporal variability outside the time-window of the satellite overpass is a concern. Based on our findings we show 
that temporal aspects are indeed not negligible and an improvement in the accuracy of crop productivity assessments can be achieved 
if data from satellites with different temporal and spatial resolutions are combined. In this study, data from the Advanced Very High 
Resolution Radiometers (AVHRR) instrument aboard the polar orbiting satellite National Oceanic and Atmospheric Administration 
#14 (NOAA-14) and data from the Visible Infrared Spin Scan Radiometer (VISSR) instrument onboard the Geostationary 
Meteorological Satellite #5 (GMS-5) are integrated in a dynamic crop growth simulation procedure. The existing estimation method 
we used to evaluate our results against solely dependents on data from polar orbiting satellites, which observe the earth surface too 
infrequently to yield sufficient clear-sky observations (only 24 out of 100 days of the crop cycle were cloud-free). More observations 
of temperature differences between the crop canopy and ambient air can be obtained when coupled with geo-stationary satellite 
measurements that represent the diurnal cycle. The linear interpolation procedure applied to obtain proxies for missing days 
improved accordingly.  The results indicate that Storage Organ Mass (SOM) values can be determined from the new method with a 
higher degree of certainty as compared to the existing method.  When evaluated against SOM values as observed at Quzhou, P.R. of 
China, experimental maize fields, the estimates are within an accuracy of about 150 kg ha-1, a relative error of less than 1,8%. This 
also confirms our hypothesis that observations from geo-stationary satellites as an additional data source, which are more frequent 
available than measurements from polar orbiting satellites, can be useful to explain temporal dynamics of crop stress to better 
estimate regional crop productivity. 
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1. INTRODUCTION 

1.1 Rational 

Various approaches for estimating crop production have been 
proposed and tested since the 1960’s to assist food (security) 
planners.  These mainly aimed at improving traditional crop 
status reports and used techniques varying from crop growth 
simulation on a point-to-point basis to empirically derived 
index values that link satellite data with observed crop 
productivity.  For regional applications, quantitative crop 
growth modeling is a most promising development since it 
considers the dynamics of essential physiological and 
environmental processes and thus aids in the universal 
quantification of productivity of food and fiber crops. 
 
Observations from satellites have been found useful to infer the 
required parameters for crop growth modeling on a real-time 
and area basis, but procedures still remain challenging.  Only 
few satellite sensors have a sufficient number of channels to 
derive input parameters meaningful for crop growth simulation. 

Key to remotely sensed (RS) production estimation is the crop’s 
energy budget. Incident solar radiation incident on the crop 
canopy is used in part for vaporization of water (crop 
transpiration). If less water is used (and assimilation and 
production are depressed) more energy is left for canopy 
heating, and vice versa. In other words, the difference between 
the remotely sensed crop canopy temperature and the 
corresponding ambient temperature is co-determined by the 
actual rate of crop transpiration. This temperature difference as 
detected at the moment of the satellite pass is then converted 
into daily equivalent values. If the transpiration term is isolated 
from the energy budget and divided by the theoretical 
transpiration rate of a constraint-free reference crop, a so-called 
‘coefficient of water sufficiency’ with daily equivalent values 
(cfH2O, 0-1) results, indicating the degree stomata closure and 
therewith the degree to which photosynthetic activity is reduced 
by the compounded constraints to the actual crop. Recurrent 
reading at short intervals accounts for the dynamics of crop 
growth and produces successive, near real-time estimates of 
actual crop performance. 
 



 

However, in many cases data collection is hindered by the 
presence of clouds.  This is particularly true for polar orbiting 
satellites; for only 24 out of 109 days of the crop cycle in 1999 
it was possible to obtain cloud-free pixels from NOAA-14 
imagery to infer the crop performance as will be detailed shortly 
hereafter. Some scientists proposed interpretation techniques to 
overcome the temporal limitations of using satellite 
observations (Jin and Dickinson, 1999).  Driessen and Rugege 
(2002) argued however that no interpretation procedure 
provides ‘new’ information; at best it reveals information that 
was hidden in the (collected and/or estimated) basic data and 
does so with varying accuracy. In this research we will try to 
(partly) alleviate this drawback by making use of multisensor 
satellite observations.     
 
1.2 Objectives 

The overall aim of this research is to develop knowledge and 
technology for crop production monitoring based on multi-
sensor satellite data. The objective is to assess if an 
improvement in a crop production estimate can be obtained 
when the temporal resolution of parameter values are increased 
by combining data from satellites of different nature, to see if 
this enhances the detection of periods when the crop is 
subjected to stress. 
 
2. METHODOLOGY: CROP GROWTH SIMULATION 

WITH RS-DATA 

Analytical models of biophysical production potential of annual 
food and fiber crops have been built and tested in The 
Netherlands and elsewhere since the 1960’s (De Wit and 
Penning de Vries, 1985). These models account for the 
dynamics of crop growth by dividing the crop cycle in 
successive (short) time intervals during which processes are 
assumed to take place at steady rates. ‘State variables’ such as 
leaf, root, stem and storage organ masses indicate the state of 
the system during a particular interval; their values are updated 
after each cycle of interval calculations. The relative simplicity 
and low data needs of these production situation analyses allow 
to accurately quantifying reference yield (i.e. the harvested 
produce) and production (i.e. total dry plant mass) levels, but 
for regional applications adequate basic data availability is a 
concern. As an adaptation from algorithms documented by 
Driessen and Konijn (1992), the crop growth simulation model 
(PSn) programmed for this research follows a similar line of 
reasoning but tries to improve upon its regional applicability by 
incorporating satellite derived parameter values. 
 
2.1 Crop growth simulation 

As a minimum configuration, known as ‘Production Situation 
1’ (PS-1), the model represents a simplified Land Use System in 
which production and yield are solely determined by the 
available light, the temperature and the photosynthetic 
mechanism of the crop: 
 
PS-1: P,Y = f(light, temperature, C3/C4) (Eq.1) 
 
The levels of crop production and yield calculated for PS-1 are 
not the actual production and yield but potentials that are 
normally only realized at experiment stations where even the 
last weed plant or bug is mercilessly eliminated, irrespective of 
cost. 
 

In many regions, water availability to the crop is the main 
constraint to crop growth. Water is needed in great quantity (in 
dry regions a maize crop may well transpire 1 cm of water on a 
clear sunny day, equivalent to 100,000 l ha-1d-1). Irrigation 
(and/or drainage) requires expensive infrastructure and skilled 
labour to restrict losses to the minimum and prevent soil 
degradation, e.g. caused by accumulation of soluble salts in the 
root zone. It has therefore been tried to extend the model with a 
water budget routine that matches actual consumptive water use 
with the crop’s water requirement, i.e. with the theoretical 
transpiration rate of a constraint-free crop. The so-defined 
‘Production Situation 2’ (PS-2) calculates the ‘water-limited 
production potential’ of the crop as a function of available light, 
temperature, photosynthetic mechanism and available water: 
 
PS-2: P,Y = f(light, temperature, C3/C4, water) (Eq.2) 
 
In production environments where the crop’s consumptive 
water needs are met at all times, the water-limited production 
potential is equal to the biophysical production potential 
because actual crop transpiration is equal to the theoretical 
maximum rate. If water uptake by the roots is less than required 
to meet the maximum transpiration needs, actual transpiration is 
limited to the actual water uptake rate. In this case the ‘water 
sufficiency coefficient’ (cfH2O) assumes a value <1.0 and 
assimilation and growth are less than in Production Situation 1 
due to water stress. 
 
2.2 Crop stress and canopy heating 

Incident radiation heats the canopy whereas transpiration cools 
it (Barros 1997; Kalluri and Townshed 1998). The fraction of 
the incoming radiation that is available for heating the canopy is 
set equal to the net intercepted radiation minus the energy 
needed for assimilation and for the vaporization of water lost in 
actual transpiration. The sensible heat component of the energy 
balance equation is approximated from the instantaneous 
temperature difference between air temperature and canopy 
temperature of a crop surface. More rigorous considerations of 
the momentum flux theory are provided by, inter alia, 
Bastiaanssen (1998) and Parodi (2000); isolated terms of the 
energy balance equations essential for this research are detailed 
below. 
 
The latent heat flux can be isolated from the energy balance 
equation using a similar formulation as used by Soer (1980): 
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TRLOSS represents the energy needed to vaporize the water 
lost in actual transpiration by the crop: 
 
TRLOSS = TRact * LATHEAT (Eq.4) 
 
Where: 
TRact = is actual transpiration rate [kg m-2s-1] 
LATHEAT = is latent heat of vaporisation [2.46 * 106 J kg-1] 
 
Isolating TRact as a function of ∆T yields: 
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Introducing Equation 5 in crop growth simulation is only 
possible if parameter values are commensurate with the 
minimum temporal resolution of the simulation. The actual 
transpiration rate, TRact, must be presented as a daily value, 
which implies that ∆T cannot be the instantaneous value 
measured at the time of the satellite pass but must be converted 
to an equivalent daily value.  
 
The following procedure was adopted to obtain equivalent 
canopy temperature values for whole days (from instantaneous 
satellite observations): 

• Calculate the equivalent satellite-derived 
instantaneous canopy temperature for days in-between 
measurements as a function of the daily rate of change 
over the interval between two successive cloud-free 
satellite observations in a linear interpolation 
procedure. 

• Convert obtained instantaneous canopy temperatures 
to equivalent daily values by accounting for actual 
conditions during the day. To this end, the 
instantaneous canopy temperature values are 
multiplied by the fraction of sunshine hours for the 
day of year plus 20% of the clouded fraction. (It is 
assumed that there is still 20% radiation under an 
overcast sky.)  

 
In the crop growth model, the equivalent daily canopy 
temperature for each day in the crop cycle is approximated with: 
 
INTERTcan(adj.) = INTERTcan * CONVFAC (Eq.6) 
 

Where: 
INTERTcan = interpolated Satellite-derived temperature value [oC] 
CONVFAC = conversion factor for actual daytime conditions. 
 

With: 
CONVFAC = (SUNH + 0.2 * (DL – SUNH)) / DL (Eq.7) 
 
Equation 7 is applied to days with measurements as well as to 
days between measurements. 
 
The maximum transpiration rate (TRmax) is a reference value 
conditioned by the evaporative demand of the atmosphere 
(represented by the potential water use from a Penman-type 
reference canopy) and the properties of the actual crop canopy, 
notably its exposure to the atmosphere: 
 
TRmax = TR0 * CFLEAF * TC (Eq.8) 
 

Where: 
TRmax = is maximum transpiration rate [kg m-2 s-1] 
TR0 = is potential transpiration rate from Penman-type canopy 
[kg m-2 s-1] 
CFLEAF= is ground cover fraction of the actual canopy [0-1] 
TC = is ‘actual turbulence coefficient’ [-] 

 
The potential transpiration rate from a Penman-type canopy 
equals the potential evapotranspiration rate (ET0) minus the 
evaporation component (Emax). The Penman-type reference 
canopy is defined as a short, green, closed, well-watered canopy 
with standard properties. The leaf area index (LAI) of this 
canopy will be close to LAI = 6 and the extinction coefficient is 
of the order of 0.5. It follows that the maximum rate of 
evaporation from underneath this reference canopy is 
approximated by Emax = E0 * exp (-ke * LAI) = E0 * exp (- 3) = 

0.05 * E0. Consequently, potential transpiration from the 
reference canopy amounts to: 
 
TR0 = ET0 – 0.05 * E0 (Eq.9a) 
 

Where: 
ET0 = is potential evapotranspiration rate from reference canopy 
[kg m-2 s-1] 
E0 = is potential evaporation rate [kg m-2 s-1] 
 
If it is assumed that the difference between ET0 and E0 is small, 
i.e. within the error margin of satellite-derived ET0-estimates, 
TR0 can be approximated by: 
 
TR0 = 0.95 * ET0 (Eq.9b) 
 
The ground cover fraction of the actual crop canopy was 
described by equation 7. The effects of turbulence on the 
theoretical maximum transpiration rate are variable and 
complex; they depend on such diverse factors as wind speed, 
ET0, canopy height, canopy roughness and parcel size. Driessen 
and Konijn (1992) propose a turbulence coefficient with values 
between 1.0 and a maximum coefficient value TCM. The value 
of TCM is set equal to the maximum value of the crop 
coefficient, kc, as defined by Doorenbos et al (1979). Driessen 
and Konijn (1992) suggest the following relationship: 
 
TC = 1 + (TCM –1) * CFLEAF (Eq.10) 
 
With the sufficiency coefficient cfH2O equal to TRact / TRmax, 
the parameter can thus be described as a function of the 
difference in temperature between the canopy and the 
surrounding air: 
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On this basis, it becomes possible to adjust assimilation and 
calculated actual crop growth from instantaneous measurements 
or derivations of canopy and ambient temperatures. Note that 
the so obtained value of cfH2O takes the analysis beyond the 
water-limited production potential (PS-2 level) to the level of an 
actual-farmer (PS-n) without the necessity of accounting for all 
yield-limiting and yield-reducing factors (stress due to water 
scarcity, water logging, nutrient shortage or excesses, pests, 
diseases, pollutants etc). Stomatal closure due to water shortage 
is a well-documented and understood phenomenon. However, 
also pest and disease attacks on crops, depending on severity of 
the damage inflicted, reduce the numbers and/or the efficient 
functioning of stomata leading to reduced transpiration hence 
assimilation. The so-defined ‘Production Situation n’ (PS-n) 
calculates an ‘actual-farmer’s’ production level of the crop as a 
function of available light, temperature, photosynthetic 
mechanism and compounded constraints (or crop stress) as 
reflected by the heating of the canopy: 
 
PS-n: P,Y = f(light, temperature, C3/C4, canopy heating) (Eq.12) 
 
Rugege and Driessen (2002) demonstrated that based on the 
same production function indeed highly accurate estimates of 
maize yield can be obtained. This has promise for regional 
applications since it greatly reduces the computational data 
needs with few other forcing variables needed then the 



 

difference between ambient air and surface (or canopy) 
temperature. This is also the weakness of the approach that the 
uncertainty of the estimates increases when ∆T is not available 
for all days in the crop cycle, as often pixels are not entirely 
cloud-free at the moment of the satellite pass. 
 
Note that for computations of ∆T the following is needed: one 
observer to record ambient air (Ta) and another for surface (or 
canopy) temperature (To). Key to accurately quantifying the 
thermodynamic process of transfer of energy from objects that 
are warmer than their surroundings to the air, or from the air to 
cooler objects, is that the absolute difference between the two 
are observed at the same instantaneous moment, and using 
observers that yield independent readings. Currently, ambient 
(air) temperature is often taken from meteorological surface 
observations. After these surface (point) observations have 
undergone objective analysis, their spatial and temporal 
resolutions have miraculously become commensurate with the 
surface (or skin) temperature observation from satellites. 
Diurnal variations of temperature (differences) can be highly 
dynamic, and in such cases the resulting cfH2O or any other 
derivation of the latent heat flux merely reflects the (lack of) 
quality of the interpolation technique being deployed rather 
than approximating the absolute transference of heat, inter alia 
crop stress. Even though acknowledged, for this research it is 
assumed that errors caused by this flaw can be neglected, and 
that positive differences between To and Ta can be fully 
subscribed to canopy heating, and thus crop stress. Maybe this 
is the proper moment to stress that this research is by no means 
perfect. As yet, no technique for inferring Ta from satellite data 
is available that provides estimates compliant with these 
requirements, i.e. that both parameters can be inferred from a 
single satellite using data observed at independent wavelengths, 
which as such would avoid any errors coming form the above 
mentioned viewing-time discrepancies. 
 
2.2.1 Observing crop canopy heating from Space 
 
A formidable challenge lies in combined use of data from 
multiple satellites of complementary specifications to further 
satisfy the spatial, temporal and radiometric requirements for 
canopy temperature inference. Estimating ambient air 
temperature from satellite data will possibly be dealt with in 
future experiments; this study focuses on estimating canopy 
temperature only. 
 
2.2.2 Multi-sensor canopy temperature retrieval in 
retrospect: Accurate retrieval of surface temperature is 
complicated if measurements are made by sensors aboard 
satellite platforms far from the ground. Atmospheric attenuation 
processes including absorption, upward atmospheric radiance 
and bi-directional reflection of downward atmospheric radiance 
affect transmission of the emitted radiation. Absorption of water 
vapour is considered to be the most important factor influencing 
radiance transfer in the thermal spectral range (Bastiaanssen, 
1995; Qin and Karnieli, 1999). 
 
Polar orbiting satellites have a relatively high signal-to-noise 
ratio, and depending on the flight characteristics of the 
spacecraft in question they cover the same spot of the earth 
surface once every day. Coupled with cloudy conditions very 
few clear-sky satellite observations remain for repetitive skin 
temperature retrieval at a fixed position of the earth’s sphere. 
For skin (or canopy) temperature inference the so-called ‘split-
window’ technique is commonly applied for data from multi-

thermal band sensors. The technique eliminates effects of water 
vapour absorption and emission by using data in the 10 to 13 
µm range, often referred to as the T11 and T12 bands. The 
concept exploits the different absorption characteristics of the 
atmosphere within these different but close wavelengths, 
assuming that surface emissivity is constant over this spectral 
region. Detailed reviews of split-window algorithms are 
provided by Caselles et al (1997), Qin and Karnieli (1999) and 
by Parodi (2000). 
 
Geo-stationary satellites observe diurnal changes of the 
atmosphere and earth surface, but due to their orbital height 
(approx. 30.000 km) at a lower signal-to-noise ratio. Despite 
their attractive temporal resolution they observe the earth 
surface at (nadir) resolutions of >5 km for TIR bands, actual 
resolutions depending on the sensor in question and distance 
from at nadir. Such spatial resolutions are insufficient for most 
regions, which have scattered land use practices resulting in 
mixed-pixel observations. Data from more *recent sensors with 
smaller at nadir resolutions (<3.25 km) may further help to 
overcome this drawback and permit to up scale the developed 
methodology to regions with less homogenous land cover. Most 
sensors aboard geo-stationary satellites also have two channels 
in the thermal infrared range of the spectrum (10 to 13 µm). 
Researchers have effectively exploited this to minimize the 
errors in estimating land surface (or canopy) temperature in a 
manner comparable to the split-window technique, as 
commonly applied to polar orbiting satellites data. In an attempt 
to further improve the technique for geo-stationary satellites. 
Sun and Pinker (2002) showed that by adding a second term of 
the brightness temperature difference (T11-T12)

2, the atmospheric 
effect can be further removed. They also noted that when the 
satellite viewing angle increases, the optical path and the 
atmospheric attenuation increase also. After McClain et al. 
(1985) they added a zenith angle correction term (secθ-1) to 
further normalize the data for optical path variations. Yuichiroh 
(2004) further elaborated on this idea, and signalled that the 
effect of water vapor is not fully removed when the split-
window technique is calibrated under general atmospheric 
conditions. After Coll and Caselles (1997) he attempted to 
further improve the algorithm by calculating various 
coefficients for different precipitable water levels (range: 0 – 5, 
precision: 0.01 (g/cm2)) using a radiative transfer model over 
The Tibetan Plateau for the application of the method to 
satellite data from GMS-5.  
 
For this study satellite data from NOAA-14 and GMS-5 were 
used because of the similar specifications of the two instruments 
onboard these satellites and their complementary viewing 
frequency. The NOAA-14 spacecraft passes at approx. 14.00 h 
local time (range: 13.00 – 15.00 h), whereas GMS-5 scans the 
whole of South East Asia every hour.  

                                                                 
* SEVIRI (Spinning Enhanced Visible and Infra Red Imager) 

instrument aboard the European geo-stationary MSG-1 and 2 and 
the spectral channels of the Chinese Visible and Infrared Spin Scan 
Radiometer (VISSR) aboard the geo-stationary FY-2C will enhance 
upon the applicability of the procedures presented in this research 
by their improved temporal and spatial resolution. 



 

2.2.3 Inter-calibration between GMS-5 and NOAA-14: 
Instrument calibrated data from GMS-5 have been evaluated 
against calibrated data from the polar orbiting satellites NOAA-
14 by the Japanese Meteorological Satellite Center, JMA 
(Tokuno M., 1997). The results of their evaluation revealed that 
the brightness temperatures of IR1 (10.5-11.5 µm) of GMS-5 
are about 1.2 (K) lower than those of Ch4 (10.3-11.3 µm) of 
NOAA-14/AVHRR on average, and the brightness temperatures 
of IR2 (11.5-12.5 µm) of GMS-5/VISSR are about 0.6 (K) 
higher than those of Ch5 (11.5-12.5 µm) NOAA-14/AVHRR.  
 

 
 
Figure 1. Influence of water vapour on differences in brightness 

temperatures for the GMS-5/NOAA-14 split-window 
channels 

 
Figure 1 shows the influence of water vapor by relating the 
brightness temperature difference for IR1 vs. Ch4 and IR2 vs. 
Ch5 at increasing levels of humidity. The sensitivity of IR1 is 
almost the same as that of Ch4, whereas the sensitivity of IR2 is 
greater than Ch5 for higher humidity levels as can be seen form 
the increasing IR2-Ch5 values. This is possibly caused by 
instrument differences between the two satellites. 
 

 
Figure 2.  Instrument response curve for NOAA-14/AVHRR and 

GMS-5/VISSR 
 
Figure 2 shows the normalized response curves (to a value of 1) 
of the two instruments as a function of wavelength after 
Yuichiroh (2004). Small, but apparently significant band-to-

band wavelength and response function differences call for a 
careful selection of split-window algorithms for parallel land 
surface temperature retrieval, inter alia crop canopy 
temperature, from the two satellites. 
 
2.2.4 Crop canopy temperature retrieval from GMS-5 
and NOAA-14: The retrieval of canopy temperatures from 
satellite data is based on the Stephan-Boltzman black body 
emission equation: 
 
R = ��0T

4 (Eq.13) 
 

Where: 
R = is radiation emitted by the surface (W m-2) 
� = 5.67 x 10 –8 Wm-2 K-4 (the Stephan-Boltzman constant) 
�0 = emissivity of the surface 
T = surface temperature [K] 
 
The emissivity term in the equation is a measure of the 
efficiency with which the surface emits energy. A perfect 
emitter, the black body, has an emissivity of 1. The black body 
is a theoretical concept whose behaviour does not exist in 
nature. The emissivity of most natural bodies lies between 0.91 
and 0.98 in the thermal wave region 8-14 �m (Qin and Karnieli, 
1999). Actual surface emissivity depends on surface 
characteristics such as the vegetation and the surface wetness, 
so that its diurnal variation is expected to be relatively small but 
day-to-day variation can be significant. We estimated the 
surface emissivity from NOAA/AVHRR visible channels by 
interpolating in-between days when NOAA-14 observations 
were contaminated but GMS-5 observations were cloud-free so 
temperature and emissivity separation was still needed. The 
procedure is the same as Kerr et al. (1992) and Sobrino et al. 
(2000), who estimated narrow-band emissivity semi-empirically 
from a Normalized Difference Vegetation Index (NDVI). The 
optical imagery from which this NDVI is computed are 
atmospherically corrected based on the SMAC–algorithm 
(Simplified Method for Atmospheric Correction of Satellite 
Measurements in the Solar Spectrum) using standard 
atmospheric conditions (Rahman, H., and G. Dedieu, 1994). 
 
For observations from the polar-orbiting satellite the split-
window algorithm developed by Coll and Caselles (1997) was 
selected to estimate maize crop canopy temperatures. The 
algorithm was selected based on the notion that it accounts 
better for water vapour then the split-window algorithm 
commonly applied, and because it has been calibrated for data 
from the two satellites used in this study. This in turn helps to 
improve to the consistency of the inference. This split-window 
algorithm takes the following form: 
 
T0 = c1

�(T11)2 + c2
�T11 + c3

�T11�T12 + c4
�(T12)2 + Offset (Eq.14) 

 

Where: 
T0 = surface temperature [K] 
T11, T12 = split-window brightness temperature [K] 
 
The regression coefficient ‘ci’ corrects for atmospheric water 
vapor; and the offset corrects for surface emissivity in bands 
T11 and T12. For applications to the geo-stationary satellite the 
split-window algorithm takes the same form, except that the 
regression coefficient ‘ci’ not only corrects for atmospheric 
water vapour but also accounts for the optical path length based 
on the satellite zenith angle. The algorithm was calibrated for 
GMS-5 by Yuichiroh (2004) and used to estimate canopy 
temperatures in-between days NOAA-14 observations were 
contaminated.  



 

To derive land surface temperature it is essential to detect 
cloud-covered areas correctly because equation (14) is only 
available when the satellite receives radiation from the surface, 
and not from a cloud top. We utilized a cloud detection method 
which utilizes a combination of a semi-automated threshold 
brightness temperature T11 filtering technique (unique for the 
two sensors) and a case-by-case analysis of the visible band, 
and in the case of GMS-5 also the water vapour band (T6, 
6.7µm). Precipitable water (PW) was estimated by an empirical 
function using the GMS-5/VISSR T6 band based on work by 
Chester et al. (1987). 
 
2.2.5 Integration of Remotely Sensed Crop Canopy 
Temperature into the PS-n Model: Figure 3 below presents a 
relational diagram of the methodology for deriving canopy 
temperatures from satellite imagery and integrating them in the 
PS-n model by updating the temperature difference forcing 
variable. The flow diagram shows two parallel processes that 
feed data into the PS-n model. The right side of the flow 
diagram describes the canopy temperature retrieval process 
from satellite imagery using the split-window technique. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Relational diagram of the integration of satellite-

derived crop canopy temperatures in the PS-n model  
 
2.2.6 Data and study area: Satellite data for GMS-5 were 
routinely processed and archived under the GAME/Tibet 
(GEWEX Asian Monsoon Experiment) project (Koike et al., 
1999) and for the crop season of 1999 imagery was obtained 
through the Weather Satellite Image Archive as published by 
Kochi University, Japan (http://weather.is.kochi-u.ac.jp/archive-
e.html). For the same period NOAA/AVHRR images, obtained 
from the NOAA Satellite Active Archive WWW site, were 
aggregated to the same pixel resolution of the GMS-5/VISSR 
TIR bands so they could be combined for our proposed multi-
sensor crop production methodology. The table below shows 
the precision and value ranges of the satellite products, some of 
which are also depicted in Figure 3. 
 

Map Range Precision 
NDVI -1 - 1 0.001 
ε 0 - 1 0.001 
PW 0 - 5 0.01 
T0 250 - 350 0.1 

 
Table 1. Data precision and value ranges 

  

To avoid mixed-land cover observations in one image pixel, a 
region characterized by homogeneous land cover and uniform 
soil characteristics was identified. The North China Plain 
consists of flat terrain at 40 m.a.s.l with uniform, re-washed 
loess (loam) soils. Located in these plains uniform Land Use 
Systems (>250 sq. km) were selected where experimental maize 
fields were set-up, within the administrative district Quzhou, 
People’s Republic of China. Here, researchers from the China 
Agricultural University, Beijing routinely conduct the field 
trials, inter alia on maize production potentials. They kindly 
provided experimental production and yield data and correlated 
weather data recorded from an automatic recording station 
within the experimental site. In addition, planted areas and 
yields of surrounding administrative counties were provided for 
validation and calibration of the PS-n simulations.  
 

3. RESULTS AND DISCUSSION 

The results from the retrieval of canopy temperatures from 
satellite data from GMS-5 and NOAA-14 showed good internal 
agreement with a RMSE of 0.85, a BIAS of 0.92, and a STDV 
of 6.26 (Kelvin), as is also confirmed by the scatter plot of 37 
observations as depicted in Figure 4.  

 
Figure 4. Scatter plot of estimated canopy temperature for

 NOAA-14/AVHRR and GMS-5/VISSR 
 
As ‘cloud-free’ AVHRR imagery that could be obtained for the 
crop season of 1999 was not entirely free of cloud on all dates, 
selected pixels with no contamination were identified for further 
analysis. The PS-n model was run using canopy temperature 
data obtained from these selected pixels to update the 
‘TEMPDIFF’ (∆T) forcing variable including the pixel 
containing the Quzhou maize research site. As only 24 cloud-
free AVHRR observations could obtained for the 1999 crop-
season, it was necessary to fill in the days when canopy 
temperature data were unavailable. A linear interpolation 
procedure was applied conform the computational steps as 
detailed in section 2.2 of this paper (Eq.6 and 7) so as to obtain 
proxies for missing days. The upper part of Figure 5 shows the 
output curves of simulated (PS-n) structural plant matter 
development based on NOAA-14/AVHRR data alone. Crop 
stress indicated by the grey line (cfH2O) shows that the crop 
suffered from water shortage on multiple occasions. Specifically 
stress period 1a (*JD: 178 – 184) and 2a (JD: 262 – 265) 

                                                                 
* Julian day 
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indicated by the vertical, light grey lines could very well be 
erroneous since the interpolation technique has to rely for its 
guess on relatively few observations. For its guess of the first 
stress period (1a) the technique relies on a single NOAA-14 
observation (JD: 182) of (temporal) canopy heating during a 
period of 21 days of no observations; only two observation of 
no crop stress preceded and proceeded (JD: 177 – 199). For 
estimating the second stress period (2a) the interpolation 
technique can rely on more NOAA-14 observation (JD: 263, 
264, 265). However, before the onset of this particular stress 
period (JD 262) there are again few observations available, with 
the last cloud-free satellite overpass occurring on JD 250. 
Hypothetically, the duration of crop stress could have been 
much longer if its onset was wrongly estimated merely due to a 
lack of observations.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Dry matter growth curves simulated with the PS-n 

model on the basis of the canopy-ambient air 
temperature difference. 

 
Since the time-window for obtaining satellite data based on the 
NOAA-14 overpass ranges from 13.00 to 15.00 h, the 
introduction of GMS-5 data theoretically triples our chances 
since the satellites scans our area of interest every hour (approx. 
13.00, 14.00 and 15.00 h). With a bias towards obtaining 
additional cloud-free observations before, during and after these 
particular crop stress periods we were able to infer more ∆T 
values from GMS-5. Now 32 cloud-free observations could be 
used compared to only 24 out of 100 days of the crop cycle 
when we relied on data form NOAA-14 alone. The robustness of 
the crop stress detection improved considerably, and seemed to 
confirm that the second period of stress (2a and 2b) was indeed 
as short as initially estimated. From five additional observations 
could be concluded there was indeed no canopy heating 
between JD 250 – 263. In addition, more observations during 
the first crop stress period could be obtained for days that were 
cloudy at the moment NOAA-14 passed, but cloud-free just after 
or before this moment when GMS-5 scanned our area of 
interest.  The duration of the first stress period (1a) now proved 

to be much shorter (JD: 182 – 184 instead of 178 – 184) as 
indicated on the graph (1b), lower part of Figure 5. 
 
The results indicate that Storage Organ Mass (SOM) values can 
be determined from the new method with a higher degree of 
certainty as compared to the existing method. When evaluated 
against SOM values as observed (8453 kg ha-1) at Quzhou, P.R. 
of China, experimental maize fields, the estimates are within an 
accuracy of about 150 kg ha-1, a relative error of less than 1.8%. 
This also confirms our hypothesis that observations from geo-
stationary satellites as an additional data source, which are more 
frequently made than measurements from polar orbiting 
satellites, can be useful to explain temporal dynamics of crop 
stress to better estimate regional crop productivity. 
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